Experimento de la doble rendija

Los fotones o partículas de materia (como un electrón) producen un patrón de onda cuando se usan dos rendijas

En la física moderna, el experimento de la doble rendija es una demostración de que la luz y la materia pueden mostrar características tanto de ondas como de partículas definidas clásicamente; además, muestra la naturaleza fundamentalmente probabilística de los fenómenos de la mecánica cuántica. Este tipo de experimento fue realizado por primera vez, utilizando luz, por Thomas Young en 1801,[1]​ como demostración del comportamiento ondulatorio de la luz.[2]​ En aquella época se pensaba que la luz consistía en ondas o en partículas. Con el inicio de la física moderna, unos cien años más tarde, se comprendió que la luz podía, de hecho, mostrar un comportamiento característico tanto de las ondas como de las partículas. En 1927, Davisson y Germer demostraron que los electrones muestran el mismo comportamiento, lo que se extendió posteriormente a los átomos y las moléculas.[3][4]​ El experimento de Thomas Young con la luz formaba parte de la física clásica mucho antes del desarrollo de la mecánica cuántica y del concepto de dualidad onda-partícula. Él creía que demostraba que la teoría ondulatoria de la luz era correcta, y su experimento se conoce a veces como el experimento de Young o las rendijas de Young.[5]

El experimento forma parte a una clase general de experimentos de "doble trayectoria", en los que una onda se divide en dos ondas separadas (la onda suele estar formada por muchos fotones y es mejor denominarla frente de onda (no confundirla con las propiedades ondulatorias del fotón individual) que posteriormente se combinan en una sola onda. Los cambios en las longitudes de trayectoria de ambas ondas dan lugar a un desplazamiento de fase, creando un patrón de interferencia. Otra versión es el interferómetro Mach-Zehnder, que divide el haz con un divisor de haz.

En la versión básica de este experimento, una fuente de luz coherente, como un rayo láser, ilumina una placa perforada por dos rendijas paralelas, y la luz que pasa por las rendijas se observa en una pantalla detrás de la placa.[6][7]​ La naturaleza ondulatoria de la luz hace que las ondas luminosas que pasan por las dos rendijas interfieran, produciendo bandas brillantes y oscuras en la pantalla, un resultado que no se esperaría si la luz estuviera formada por partículas clásicas.[6][8]​ Sin embargo, la luz siempre se absorbe en la pantalla en puntos discretos, como partículas individuales (no ondas); el patrón de interferencia aparece a través de la densidad variable de estos impactos de partículas en la pantalla.[9]​ Además, las versiones del experimento que incluyen detectores en las rendijas encuentran que cada fotón detectado pasa a través de una rendija (como lo haría una partícula clásica), y no a través de ambas rendijas (como lo haría una onda).[10][11][12][13][14]​ Sin embargo, estos experimentos demuestran que las partículas no forman el patrón de interferencia si se detecta por qué rendija pasan. Estos resultados demuestran el principio de la dualidad onda-partícula.[15][16]

Se ha comprobado que otras entidades a escala atómica, como los electrones, presentan el mismo comportamiento cuando se disparan hacia una doble rendija.[7]​ Además, se observa que la detección de impactos discretos individuales es inherentemente probabilística, lo cual es inexplicable utilizando la mecánica clásica.[7]

El experimento puede realizarse con entidades mucho mayores que los electrones y los fotones, aunque resulta más difícil a medida que aumenta el tamaño. Las entidades más grandes con las que se ha realizado el experimento de la doble rendija han sido moléculas compuestas por 2.000 átomos cada una (cuya masa total era de 25.000 unidades de masa atómica).[17]

El experimento de la doble rendija (y sus variaciones) se ha convertido en un clásico por su claridad a la hora de expresar los enigmas centrales de la mecánica cuántica. Debido a que demuestra la limitación fundamental de la capacidad del observador para predecir los resultados experimentales, Richard Feynman lo llamó "un fenómeno que es imposible [...] de explicar de cualquier manera clásica, y que tiene en él el corazón de la mecánica cuántica. En realidad, contiene el único misterio [de la mecánica cuántica]."[7]

  1. Young, Thomas (1 de enero de 1802). «II. The Bakerian Lecture. On the theory of light and colours». Philosophical Transactions of the Royal Society of London 92: 12-48. doi:10.1098/rstl.1802.0004. Consultado el 11 de agosto de 2022. 
  2. Young, Thomas (1804). The Bakerian lecture. El.1804.0001. S2CID 110408369. Consultado el 14 de julio de 2021. 
  3. Blog, The Physics arXiv (8 de noviembre de 2013). «Physicists Smash Record For Wave-Particle Duality». The Physics arXiv Blog (en inglés). Consultado el 3 de agosto de 2022. 
  4. Eibenberger, Sandra; Gerlich, Stefan; Arndt, Markus; Mayor, Marcel; Tüxen, Jens (2013). «Matter-wave interference with particles selected from a molecular library with masses exceeding 10000 amu». Physical Chemistry Chemical Physics 15 (35): 14696. ISSN 1463-9076. doi:10.1039/C3CP51500A. Consultado el 3 de agosto de 2022. 
  5. Internet Archive, Andrew (2006). The last man who knew everything : Thomas Young, the anonymous polymath who proved Newton wrong, explained how we see, cured the sick, and deciphered the Rosetta stone, among other feats of genius. New York : Pi Press. ISBN 978-0-13-134304-7. Consultado el 3 de agosto de 2022. 
  6. a b Lederman, Leon M.; Christopher T. Hill (2011). Quantum Physics for Poets. US: Prometheus Books. pp. 102-111. ISBN 978-1616142810. 
  7. a b c d Feynman, Richard P.; Robert B. Leighton; Matthew Sands (1965). The Feynman Lectures on Physics, Vol. 3. Addison-Wesley. pp. 1.1-1.8. ISBN 978-0201021189. 
  8. Feynman, 1965, p. 1.5
  9. Darling, David (2007). «Wave–Particle Duality». The Internet Encyclopedia of Science. The Worlds of David Darling. Consultado el 18 de octubre de 2008. 
  10. Feynman, 1965, p. 1.7
  11. Leon Lederman; Christopher T. Hill (27 de septiembre de 2011). Quantum Physics for Poets. Prometheus Books, Publishers. p. 109. ISBN 978-1-61614-281-0. 
  12. "...if in a double-slit experiment, the detectors which register outcoming photons are placed immediately behind the diaphragm with two slits: A photon is registered in one detector, not in both..." Müller-Kirsten, H. J. W. (2006). Introduction to Quantum Mechanics: Schrödinger Equation and Path Integral. US: World Scientific. p. 14. ISBN 978-981-2566911. 
  13. Plotnitsky, Arkady (2012). Niels Bohr and Complementarity: An Introduction. US: Springer. pp. 75-76. ISBN 978-1461445173. 
  14. "It seems that light passes through one slit or the other in the form of photons if we set up an experiment to detect which slit the photon passes, but passes through both slits in the form of a wave if we perform an interference experiment." Rae, Alastair I.M. (2004). Quantum Physics: Illusion Or Reality?. UK: Cambridge University Press. pp. 9-10. ISBN 978-1139455275. 
  15. Feynman, The Feynman Lectures on Physics, 3:Quantum Mechanics p.1-1 "There is one lucky break, however— electrons behave just like light.".
  16. See: Davisson–Germer experiment Davisson, C. J (1928). «The diffraction of electrons by a crystal of nickel». Bell System Technical Journal 7: 90-105. doi:10.1002/j.1538-7305.1928.tb00342.x. 
  17. Yaakov Y. Fein; Philipp Geyer; Patrick Zwick; Filip Kiałka; Sebastian Pedalino; Marcel Mayor; Stefan Gerlich; Markus Arndt (September 2019). «Quantum superposition of molecules beyond 25 kDa». Nature Physics 15 (12): 1242-1245. Bibcode:2019NatPh..15.1242F. S2CID 203638258. doi:10.1038/s41567-019-0663-9. 

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search